
The many primitives of mereology

Josh Parsons

December 21, 2012

Abstract

Formal mereologies are axiomatised in a variety of different ways, with
a variety of different primitives. In this paper I distinguish three such ways,
and show that not every way is suitable for every mereology.

1 Introduction

Classical Extensional Mereology (CEM) has an interesting feature: it admits of
various different axiomatisations in terms of various different primitives. Some,
like Eberle, treat the “is a (proper or improper) part of” predicate as the primitive;
some, like Simons, treat the “is a proper part of” as the primitive; some, like
Goodman, treat the “overlaps” predicate (or its negation, “is disjoint from”) as the
primitive.1

This seems to me to be a metaphysically significant feature of CEM. If CEM
is correct — if all its theorems are true, then metaphysicians have a choice to
make in how we understand the mereological nature of the world. We may think
of the mereological relation either as a relation of part to whole, or as a relation
of overlap; for if we give a metaphysical theory about one, we thereby give a
metaphysical theory about the other. We may choose which we think of as more
metaphysically fundamental, for the they are interdefinable. However, if CEM is
not correct, then perhaps we do not have this choice. Perhaps part-whole cannot

1For Eberle, see the discussion in Simons (1987, pp. 50-52); for Simons, see his (1987, pp.
25–41); for Goodman, see his (1951, pp. 42-51) and the discussion in Simons (1987, pp. 48-50).
It should be noted that axiomatisations may also differ on what axioms are used, as well as on
what the primitive is. For recent work on alternative axiomatisations of CEM of this kind, see
Hovda (2009).
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be defined in terms of overlap; in which case we must choose part-whole as the
metaphysical fundamental mereological relation (if any relation is).

It would be nice to know, given a mereological theory, which styles of ax-
iomatisation are possible for it. That way, if CEM is not correct, but some weaker
mereology is, we could know whether that mereology would let us regard overlap,
or part-whole, or proper part, as the fundamental mereological relation.

In this paper, I explore which mereologies are axiomatisable in which of the
three styles — Eberle, Simons, and Goodman — described above. I claim that all
mereologies must have an Eberle style axiomatisation: if a theory does not permit
the definition of its vocabulary in terms of “is part of”, it is not a mereology! I then
prove that all and only those mereologies that feature the strong supplementation
principle have an axiomatisation in Goodman’s style; and that (with some caveats)
all mereologies have an axiomatisation in Simons’s style.

The formal notation used in this paper is intended to promote readability and
avoid distracting logical issues. The logic is classical first-order predicate calcu-
lus with identity. Open sentences should be understood as implicitly universally
quantified (unless otherwise stated). Where scope is left ambiguous, negation
takes narrow scope; conditionals and biconditionals take wide scope. Detailed
proofs of some classical sequents are set out in the appendix — where the text
asserts that some principle is a logical consequence of some others, the proof may
be found there.

2 Goodman-axiomatisation and (SSP)

Goodman’s axiomatisation of CEM treats overlap (◦) as primitive, and defines “is
a (proper or improper) part of” (<) in the following way:

x < y≡d f (∀z)(z◦ x→ z◦ y) (Def<)

Let us say that a theory is Goodman-axiomatisable iff it has an axiomatisation
treating ◦ as primitive, and defining < using (Def<). A theory is Goodman-
axiomatisable iff (Def<) is an admissible rule in it — iff all instances of (Def<)
are provable in the theory. In classical first-order logic, a definition like (Def<)
is admissible in a theory iff the corresponding biconditional is a theorem of that
theory. So, a theory is Goodman-axiomatisable iff the principle (GA) is a theorem
of it:

x < y↔ (∀z)(z◦ x→ z◦ y) (GA)
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Eberle’s axiomatisation of CEM, in contrast, treats < as primitive, and defines
◦ as follows:

x◦ y≡d f (∃z)(z < x∧ z < y) (Def◦)

We may say that a theory is Eberle-axiomatisable iff (Def◦) is admissible in
it; that is, iff the principle (EA) is a theorem of it.

x◦ y↔ (∃z)(z < x∧ z < y) (EA)

Every mereology whatever should be Eberle-axiomatisable. If a mereological
theory is already axiomatised in Eberle’s way, then of course it is. If a theory is
axiomatised in any other way, then if (EA) is not a theorem, then something is
very wrong with it: ◦ does not mean “overlap” in the sense in which mereological
overlap is normally informally explained.

Not every mereology whatever is Goodman-axiomatisable, however — for
some weak mereological-looking theories do not have (GA) as a theorem.2 More,
however, can be said. I will show that a mereology is Goodman-axiomatisable
iff it has as a theorem a principle called the strong supplementation principle, or
(SSP):

¬x < y→ (∃z)(z < x∧¬z◦ y) (SSP)

(SSP) is a much-discussed and controversial theorem of classical mereology.
Non-classical mereologies often explicitly affirm or reject it. That makes it easy
to tell which non-classical mereologies are Goodman-axiomatisable. Those mere-
ologies that reject (SSP) are not presented using a Goodman-style axiomatisation
— my argument shows that they cannot be.

Obviously there are formal systems with symbols that look like < and ◦ of
which (SSP) is not a theorem and of which ◦ is the primitive. Those systems,
I would claim, are not mereological — in them, ◦ doesn’t have the right formal
characteristics to be capable of meaning “mereological overlap”. Since it is a con-
troversial matter just what a theory must do to count as a mereology, I define a
class of theories, the pre-mereologies, of which the mereologies are, uncontro-
versially, a subclass. My claim is that all and only those pre-mereologies that
have (SSP) as a theorem are Goodman-axiomatisable. Since the mereologies are
among the pre-mereologies, all and only those mereologies that have (SSP) as a
theorem are Goodman-axiomatisable.

2For example, the system Simons describes as SA0-3 (1987, p. 28) is, perhaps, a kind of non-
extensional mereology, but is not Goodman-axiomatisable. The four-element model shown on p.
28 of Simons’s book is a countermodel to (GA).
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Let a pre-mereology be any first order theory with at least two dyadic predi-
cates, < and ◦, and at least the following theorems:

x < y∧ y < z→ x < z (Trans)
x < x (Refl)
x◦ y↔ (∃z)(z < x∧ z < y) (EA)

To be a pre-mereology, that is, a theory must treat < as a pre-ordering, and
must be Eberle-axiomatisable. It’s reasonable I think, to expect that all mereolo-
gies will have these features. So every mereology is a pre-mereology; whatever
holds true of all pre-mereologies holds true of all mereologies.

If a pre-mereology is Goodman-axiomatisable, then it has (SSP) as a theo-
rem. Proof: if a pre-mereology is Goodman-axiomatisable, then it has (GA)
as a theorem. But (SSP) is a consequence of (GA), (Refl) and (EA) (this, and
other, first order proofs are set out in the appendix). (Refl) and (EA) are theorems
of every pre-mereology, so (SSP) is a theorem of every Goodman-axiomatisable
pre-mereology.

If a pre-mereology has (SSP) as a theorem, then it is Goodman-axiomatisable.
Proof: (GA) is a consequence of (SSP), (Trans), (Refl), and (EA). (Trans), (Refl),
and (EA) are theorems of every pre-mereology, so every pre-mereology that has
(SSP) as a theorem also has (GA). If a pre-mereology has (GA) as a theorem, then
it is Goodman-axiomatisable, so every pre-mereology that has (SSP) is Goodman-
axiomatisable.

So, a pre-mereology has (SSP) iff it is Goodman-axiomatisable; all mere-
ologies are pre-mereologies; therefore, all and only mereologies with (SSP) are
Goodman-axiomatisable. This sheds useful light on the significance of (SSP): it
can thought of as a kind of supervenience principle — no two things can differ
as regards what parts they have (or what they are parts of) without differing as
regards what they overlap.

3 Simons-axiomatisation

A third style of axiomatisation of classical mereology is used by Simons. He
takes “is a proper part of” as his primitive, and defines “is part of” as “is a proper
part of or identical to”. Before I introduce any notation here, I would like to
clear up some terminological problems. “proper part” appears to be used in two
senses in the literature. The first sense is the one suggested by Simons’s definition,
that “proper part” means “part of but not identical to”; so that “part of” may be
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adequately defined in Simons’s way. I call this relation “non-identical part”, and
use the symbol � for it. In a theory in which it is not a primitive, � may be defined
thus:

x � y≡d f x < y∧ y 6= x (Def�)

The second sense of “proper part” may be glossed as follows. Some weak
mereologies allow the part-whole relation to fail to be anti-symmetric — allowing
two things to be parts of each other. Let us say that x and y are mutual parts iff x
is part of y and y is part of x.3 Note that each thing is mutually part of itself (even
if part-whole is anti-symmetric); so another way of defining “proper part” in such
a way that nothing ever counts as a proper part of itself is to say that “proper part”
means “part of but not mutually part of”. I will call this relation “non-mutual
part”, and use the symbol � for it. Assuming (Refl) and (Trans), x and y have
all and only the same parts iff they are parts of each other. So in a mereology in
which it is not a primitive,� may be defined thus:

x� y≡d f x < y∧¬y < x (Def�)

How are we to tell, given a mereology in which some symbol is identified as
“proper part”, which of these two relations is meant? It’s easy if “proper part”
is a defined relation, for then we can look at which of the two definitions above
introduced it. But what if we are looking at a Simons-style axiom system where
“proper part” is the primitive? Then I suggest we should look at whether the
biconditionals corresponding to the definitions above are theorems of the system.
If the biconditional x∗ y↔ x < y∧ x 6= y is a theorem, then the relation written ∗
is non-identical part. If the biconditional x∗y↔ x < y∧¬y < x is a theorem, then
the relation written ∗ is non-mutual part.4

A characteristic of the extensional theories that Simons describes in this way is
that both of the biconditionals above are theorems. Theories like that are in effect
saying that x is a non-mutual part of y iff x is a non-identical part of y; which is
to say that x and y are mutual parts iff x and y are identical. In these systems it

3I tread carefully here, as there are two unexploded philosophical disputes in the vicinity. First,
there is a well-known dispute about whether it can happen that two things coincide, or are “made of
the same stuff”, in some sense. Second, there is a dispute about whether coincidence is properly
understood as mutual parthood, or in some other way. I wish to take sides on neither of these
issues: that is why I have used the term “mutual parthood” here, to mean “being part of each
other”, whether or not that is the right way to think about coincidence.

4What if a theory describes a relation as “proper part” but has neither of the biconditionals
as theorems? Then the theorist has made a mistake, for the relation they are describing does not
correspond to either of the senses “proper part” could have.
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doesn’t matter how we interpret their “proper part” relation — the two available
senses of “proper part” would be equivalent in those systems.

Now that we have distinguished the two possible meanings of “proper part”,
let us extend the concept of a pre-mereology to include them. Let a pre-mereology
be a first-order theory with at least four dyadic predicates <, ◦, �, and� and at
least the following theorems:

x < y∧ y < z→ x < z (Trans)
x < x (Refl)
x◦ y↔ (∃z)(z < x∧ z < y) (EA)
x � y↔ x < y∧ x 6= y (NIPP)
x� y↔ x < y∧¬y < x (NMPP)

The simplest way to understand Simons’s axiomatisation is by taking his prim-
itive to be �. Let us say that a theory is Simons-axiomatisable iff it has an axioma-
tisation treating � as primitive, and defining < in the following way:

x < y≡d f x � y∨ x = y

Every pre-mereology (and thus every mereology) is Simons-axiomatisable.
Proof: for the same reasons given in the case of Goodman-axiomatisability in
the previous section, a theory is Simons-axiomatisable if the biconditional corre-
sponding to Simons’s definition of < is a theorem. The biconditional correspond-
ing to the definition above is a consequence of (Refl) and (NIPP) (this proof is left
to the reader). So every pre-mereology is Simons-axiomatisable.

Simons-style axiomatisations of mereologies in which the part-whole relation
fails to be anti-symmetric are, however, likely to be ugly. If mutual parthood is
allowed, � fails to satisfy most of the familiar characteristics of relations that
are used as axioms by Simons. Suppose x and y are mutual parts but not identical:
then x� y and y� x but not x� x; � is not transitive. Similarly, if mutual parthood
is allowed, � fails to satisfy Simons’s weak supplementation principle (Cotnoir
2010, p. 399). There may be elegant Simons-style axiomatisations of mutual
parthood mereologies, but there have never been any presented in the literature,
and I doubt that there ever will be.

What about axiomatisations of mereologies taking � as the primitive? To
determine under what circumstances this is possible, we first have to determine
what the definition of < in terms of � would be. Suppose we used Simons’s
definition, substituting� for �:

x < y≡d f x� y∨ x = y
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There is something wrong with this definition, however. The difference be-
tween � and� is that if x and y are mutually part of each other, and are distinct,
then x � y but not x� y. If there were two such things, then this definition would
wrongly count them not as mutual parts. What’s needed is something more like
this:

x < y≡d f x� y∨ x is mutually part of y

But that is no good for we have no way of defining “is mutually part of” in
terms of�.5 Suppose we set aside these qualms, and used the Simons definition
of < in terms of� shown above. A theory is axiomatisable in this way iff it has
the following biconditional as a theorem:

x < y↔ x� y∨ x = y (NMPA)

All and only those pre-mereologies in which (NMPA) is a theorem also have
this theorem — anti-symmetry:

x < y∧ y < x→ x = y (ASym)

Proof: (ASym) is a consequence of (NMPA) and (NMPP). (NMPA) is a con-
sequence of (NMPP), (ASym) and (Refl). (NMPP) and (Refl) are theorems of
every pre-mereology. So if a pre-mereology has (NMPA) as a theorem, then it has
(ASym), and vice versa.

All and only those pre-mereologies in which (ASym) is a theorem also have
this theorem:

x� y↔ x � y (PPEq)

Proof: (PPEq) is a consequence of (ASym), (NMPP), and (NIPP). (ASym) is a
consequence of (PPEq), (NMPP), and (NIPP). (NIPP) and (NMPP) are theorems
of every pre-mereology. So if a pre-mereology has (ASym), then it has (PPEq),
and vice versa.

So axiomatisations in terms of� are only possible for mereologies in which
the part-whole relation is anti-symmetric; those theories are precisely the ones in
which the difference between � and� doesn’t matter.

5It won’t do to say that two things are mutual parts iff they have all and only the same non-
mutual parts and are non-mutually part of all and only the same — that would count all mereolog-
ical atoms as mutually parts of each other. Nor will it help to say that two things are mutual parts
iff they have all and only the same non-mutual parts and are non-mutually part of all and only
the same and have some non-mutual part — that would make it impossible for two mereological
atoms to be mutual parts of one another, which situation is intended to be possible in the types of
non-extensional mereology we are dealing with here.
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A First-order proofs

I here set out proofs of the sequents of first-order classical logic I relied on in the body of
the paper. The proofs are in an abbreviated natural deduction notation, with some of the
more tedious steps elided. I also use | to mean “disjoint”: x|y is an abbreviation for ¬x◦y.

In the proofs below, unbound letters x,y,z,w,v are to be understood as names of indi-
viduals, making it easier to follow the quantifier elimination and introduction steps. Note
that this policy differs from the generality interpretation of open formulae used in the body
of the paper.

A.1 (SSP) is a consequence of (GA), (Trans) and (EA)

(1) ¬x < y assumption for conditional proof
1 (2) (∃z)(z◦ x∧ z|y) from (GA), 1
1 (3) z◦ x∧ z|y ∃ elimination, 2
1 (4) (∃w)(w < z∧w < x) from (EA), 3
1 (5) w < z∧w < x ∃ elimination, 4
1 (6) v < w assumption for conditional proof
1,6 (7) v < z from (Trans), 6
1,6 (8) ¬v < y from (EA), 7, 3
1 (9) v < w→¬v < y conditional proof, 8, discharging 6
1 (10) (∀v)(v < w→¬v < y) ∀ introduction, from 9
1 (11) ¬(∃v)(v < w∧ v < y) from 10
1 (12) w|y from (EA), 11
1 (13) w < x∧w|y from 5, 12
1 (14) (∃z)(z < x∧ z|y) ∃ introduction, 13

(15) ¬x < y→ (∃z)(z < x∧ z|y) conditional proof, 14, discharging 1
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A.2 (GA) is a consequence of (SSP), (Trans), (Refl) and (EA).

(1) x < y assumption for conditional proof
1 (2) z◦ x assumption for conditional proof
1,2 (3) (∃w)(w < z∧w < x) from (EA), 2
1,2 (4) w < z∧w < x ∃ elimination, 3
1,2 (5) w < y from (Trans), 4
1,2 (6) (∃w)(w < z∧w < y) ∃ introduction, 4, 5
1,2 (7) z◦ y from (EA), 6
1 (8) z◦ x→ z◦ y conditional proof, 7, discharging 2
1 (9) (∀z)(z◦ x→ z◦ y) ∀ introduction, 8

(10) x < y→ (∀z)(z◦ x→ z◦ y) conditional proof, 9, discharging 1
(11) ¬x < y assumption for conditional proof

11 (12) (∃z)(z < x∧ z|y) from (SSP), 11
11 (13) z < x∧ z|y ∃ elimination, 12
11 (14) z◦ x from (EA), (Refl), 13
11 (15) (∃z)(z◦ x∧ z|y) ∃ introduction, 13, 14

(16) ¬x < y→ (∃z)(z◦ x∧ z|y) conditional proof, 15, discharging 11
(17) (∀z)(z◦ x→ z◦ y)→ x < y contraposing 16
(18) x < y↔ (∀z)(z◦ x→ z◦ y) from 10, 17

A.3 (ASym) is a consequence of (NMPP) and (NMPA)

(1) x < y∧ y < x assumption for conditional proof
1 (2) ¬x� y from (NMPP), 1
1 (3) x� y∨ x = y from (NMPA), 1
1 (4) x = y disjunctive syllogism, 2, 3

(5) (x < y∧ y < x)→ x = y conditional proof, 4, discharging 1
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A.4 (NMPA) is a consequence of (NMPP), (Refl) and (ASym)

(1) x < y assumption for conditional proof
1 (2) ¬y < x∨ x = y from (ASym),1
1 (3) (x < y∧¬y < x)∨ x = y from 1, 2
1 (4) x� y∨ x = y from (NMPP), 3

(5) x < y→ (x� y∨ x = y) conditional proof, 4, discharging 1
(6) x = y→ x < y from (Refl)
(7) x� y→ x < y from (NMPP)
(8) (x� y∧ x = y)→ x < y from 6, 7
(9) x < y↔ (x� y∨ x = y) from 5, 8

A.5 (PPEq) is a consequence of (NIPP), (NMPP) and (ASym)

(1) x � y assumption for conditional proof
1 (2) x < y∧ y 6= x from (NIPP), 1
1 (3) ¬y < x from (ASym), 2
1 (4) x < y∧¬y < x from 2, 3
1 (5) x� y from (NMPP), 4

(6) x � y→ x� y conditional proof, 5, discharging 1
(7) x� y assumption for conditional proof

7 (8) x < y∧¬y < x from (NMPP), 7
7 (9) x 6= y Leibniz’s law, 8
7 (10) x < y∧ x 6= y from 8, 9
7 (11) x � y from (NIPP), 10

(12) x� y→ x � y conditional proof, 11, discharging 7
(13) x� y↔ x � y from 6, 12

References
Cotnoir, A. (2010). Anti-symmetry and non-extensional mereology. Philosophical

Quarterly 60, 396–405.

Goodman, N. (1951). The Structure of Appearance. Cambridge, MA: Harvard Univer-
sity Press.

Hovda, P. (2009). What is classical mereology? Journal of Philosophical Logic 38,
55–82.

Simons, P. (1987). Parts: a Study in Ontology. Oxford: Clarendon Press.

10


